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Ketamine's antidepressant effect
Is mediated by energy metabolism
and antioxidant defense system
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Fewer than 50% of all patients with major depressive disorder (MDD) treated with currently available

. antidepressants (ADs) show full remission. Moreover, about one third of the patients suffering

: from MDD does not respond to conventional ADs and develop treatment-resistant depression
(TRD). Ketamine, a non-competitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR)

. antagonist, has been shown to have a rapid antidepressant effect, especially in patients suffering from

: TRD. Hippocampi of ketamine-treated mice were analysed by metabolome and proteome profiling

. to delineate ketamine treatment-affected molecular pathways and biosignatures. Our data implicate

 mitochondrial energy metabolism and the antioxidant defense system as downstream effectors of

. the ketamine response. Specifically, ketamine tended to downregulate the adenosine triphosphate
(ATP)/adenosine diphosphate (ADP) metabolite ratio which strongly correlated with forced swim test
(FST) floating time. Furthermore, we found increased levels of enzymes that are part of the ‘oxidative
phosphorylation’ (OXPHOS) pathway. Our study also suggests that ketamine causes less protein

: damage by rapidly decreasing reactive oxygen species (ROS) production and lend further support to

. the hypothesis that mitochondria have a critical role for mediating antidepressant action including the
rapid ketamine response.

: Mood disorders including major depressive disorder (MDD) are a leading cause of disability worldwide'2. The
: prevalence for mood disorders has been estimated at 21 million people across 28 European countries with an
* annual cost of 106 billion Euro**. Globally, approximately 350 million people suffer from MDD, with women
. more likely to be affected than men>®. The currently available antidepressants (ADs) require chronic long-term
. treatment of several weeks before a therapeutic effect is achieved”*. Less than 50% of all patients treated with cur-
rent ADs show full remission®. Moreover, about one third of the patients suffering from MDD do not respond to
conventional ADs and suffer from treatment-resistant depression (TRD)'°. Fifteen percent of severely depressed
individuals commit suicide, the second leading cause of death for ages 15- to 29-years®.
: In 2000 Berman et al. demonstrated for the first time a rapid antidepressant effect of a low dose of ketamine
. within 2h and 4h of treatment that lasts for up to 10 days'!. Ketamine is a non-competitive, voltage-dependent
. N-Methyl-D-aspartate receptor (NMDAR) antagonist'>""’. The antidepressant effect of ketamine is also observed
© in patients suffering from TRD'®!°. Moreover, ketamine diminishes suicidal ideation®’. However, psychomimetic
side effects of ketamine have prevented its use as a first-line drug* 2.
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A low dose of ketamine was initially reported to act through the activation of the mammalian target of rapa-
mycin complex 1 (mMTORCI) causing an increase of synaptic protein levels and an elevated number of spines
and neuronal activity in the medial prefrontal cortex of rats?®. Furthermore, increased levels of postsynaptic
proteins required for formation, maturation, and function of new spines were observed 2 h after ketamine
treatment and lasted up to 72 h?®. More recent studies of ketamine’s antidepressant effects implicate a ketamine
metabolite as the actual active compound. Results from studies in mice treated with the ketamine metabolite
(2R, 6 R)-hydroxynorketamine (HNK) suggest that the antidepressant-like effect of the drug is independent of
NMDAR binding and implicate the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)
and its signaling pathway to be critical for the activity®’.

In previous studies we have shown an important role of mitochondrial energy metabolism for ketamine’s
antidepressant mode of action. A time-dependent metabolomics profiling study implicated ‘glycolysis’ and the
‘citrate cycle’ pathways. In the present paper we report on an extension of our analyses on ketamine’s fast acting
antidepressant activity that further support a critical role of mitochondrial pathways impacting cellular oxidative
stress defense mechanisms®.

Results

Our previous study on ketamine’s mode of action suggested an involvement of mitochondrial energy metabo-
lism, a finding that is also supported by its link to glutamate neurotransmission. Glutamate is metabolized from
a-ketoglutarate, a ‘citrate cycle’ metabolite, and can be recycled through this pathway. Interestingly, glutamate
neurotransmission also stimulates glucose utilization and ‘glycolysis, the upstream pathway of the OXPHOS path-
way. Therefore, we investigated whether ketamine’s fast antidepressant-like effects are reflected by metabolite
ratios that are part of the ‘citrate cycle’ and the connected OXPHOS pathway, including ATP/ADP, NADH/NAD
and GTP/GDP ratios. In addition, we correlated these metabolites with antidepressant-like behavior using the
FST floating time as a readout. Interestingly, the ATP/ADP metabolite ratio tended to be decreased 2h and 24 h
after a single injection of a low dose of ketamine. In addition, ATP and ADP levels significantly and strongly
correlated with the FST floating time at 24 h (Fig. 1A). ATP is produced from ADP by OXPHOS complex V and
NADH serves as an electron donor for OXPHOS complex I?#%. The NADH/NAD ratio neither showed a signif-
icant difference nor a significant correlation with the FST floating time (Fig. 1B). GTP is synthesized from GDP
as a by-product of succinate-CoA to succinate conversion in the ‘citrate cycle’ Succinate is an electron donor for
the OXPHOS complex II subunit A that we have previously shown to be elevated 2 h after ketamine treatment?.
We found that the GTP/GDP metabolite ratio is indeed significantly elevated 2h upon ketamine treatment and
tended to be downregulated at the 24 h time point. In addition, GTP levels significantly correlated with FST float-
ing time at both time points (Fig. 1C).

Based on the above results we next wanted to investigate whether AMP-activated protein Kinase (AMPK) is
affected by ketamine treatment. AMPK is the major energy status sensor that promotes catabolic pathways that
generate ATP and inhibits anabolic pathways that consume ATP. A low ATP/ADP ratio activates AMPK resulting
in its phosphorylation, leads to decreased activities of pathways that consume energy (anabolic pathways) and
increased activities of pathways that produce energy (catabolic pathways)**-*. Previous data from a study in rats
suggest that ketamine’s antidepressant-like effects are mediated by an increased anabolic rate, thereby inducing
cell growth and differentiation®. The result of an elevated anabolism is a higher energy demand. This is supported
by our results of an increased pAMPK/AMPK ratio and decreased ATP/ADP ratio and decreased ATP levels at
the 24 h time point?®. While total AMPXK protein levels are not significantly changed, the phosphorylated form
of the protein, pAMPK, shows a statistically significant increase at the 24 h time point (Fig. 2, Supplementary
Figure 1A and B).

We next investigated whether the observed energy status alterations upon ketamine treatment are associated
with changes in the expression of proteins related to cellular energy metabolism. Time-dependent quantitative
proteomics profiling analyses were performed 2h and 24h after a single injection of a low dose of ketamine.
Five mice per time point and treatment group were chosen and MF and CF from ketamine- and vehicle-treated
mice were isolated from the hippocampus and quantified using >N metabolically labelled reference proteins by
LC-MS/MS analyses.

After proteomics data processing and missing value imputation by k-nearest neighbor (KNN), a total of 889
hippocampal MF and 1173 CF proteins were processed by statistical analyses for the 2h time point. For the 24h
time point 929 MF and 1091 CF proteins were used for further statistical analyses (Supplemental Table S1). The
protein profiles allowed a separation of ketamine- and vehicle-treated mice using multivariate PLS-DA for both
time points (Fig. 3). The quality criteria of PLS-DA models were assessed by accuracy, R?, and Q* values. They
indicate good models for the 2h time point for MF and CF proteins of ketamine- compared to vehicle-treated
animals. The PLS-DA models were only weak for the 24 h time point, which might result in false-positives
(Supplemental Table S2). To increase the robustness of the statistical analyses we combined the VIP-score of the
PLS-DA with SAM analyses in order to obtain a reliable list of MF and CF proteins that significantly contrib-
ute to ketamine’s antidepressant effect. This resulted in 61 MF and 95 CF proteins that were statistically signif-
icant altered at the 2h time point when comparing ketamine- to vehicle-treated mice (Supplemental Table S3).
Consistent with previous analyses by us we found proteins that are part of major energy metabolism pathways
with altered levels after ketamine treatment?. The most significant alterations were detected already 2h after a
single injection of ketamine, in line with the rapid antidepressant effect of ketamine. Subsequent pathway enrich-
ment analyses highlighted altered OXPHOS, ‘purine metabolism, ‘fructose and mannose metabolism, ‘protea-
some, ‘protein processing in endoplasmic reticulum’ and ‘ribosome’ (Table 1). We found that already at the 2h
time point a low dose of ketamine resulted in increased levels of several OXPHOS proteins including complex
I NADH dehydrogenase [ubiquinone] flavoprotein 2 (Ndufv2), cytochrome c1, heme protein (Cycl), and com-
plex I assembly factor (Tmem126B) and decreased levels of NADH dehydrogenase [ubiquinone] complex I and
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Figure 1. (A) Time-dependent hippocampal analysis of adenosine triphosphate (ATP)/adenosine diphosphate
(ADP) metabolite ratio and correlation analyses of ATP (2h, p>0.05 and 24h, p <0.05) and ADP (2h, p >0.05
and 24 h, p <0.05) with the forced swim test (FST) floating time. (B) Time-dependent hippocampal analysis of
nicotinamide adenine dinucleotide (reduced) (NADH)/nicotinamide adenine dinucleotide (oxidized) (NAD)
metabolite ratio. (C) Time-dependent hippocampal analysis of guanosine triphosphate (GTP)/guanosine
diphosphate (GDP) ratio and correlation analyses of GTP (2h and 24 h, p <0.05) and GDP (2h and 24h,

p >0.05) after a single injection of a low dose of ketamine with FST floating time. The results from ketamine-
treated animals are normalized to the ones obtained from vehicle treatment (mean value =1). N =5 mice per
group and time point. *p <0.10, *p < 0.05. P-values were determined by Student’s t-test and significance analysis
of microarrays and other omic-datasets (SAM). Error bars represent s.e.m. The correlation coefficient r was
calculated by Pearson. The linear regression line is only shown for significant (p <0.05) correlation coefficients.

assembly factor 7 (Ndufaf7) (Supplemental Table S3 and Fig. 4A). Furthermore, Ndufv2, Cycl, Ndufaf7 and
Tmem126B protein levels significantly correlated with floating time in the FST (Fig. 4B). These results are con-
sistent with our previous metabolomics profiling study that had also indicated mitochondrial energy metabolism,
specifically OXPHOS, to be affected by ketamine treatment?.

Increased OXPHOS activity can result in higher ROS levels. The phenomenon referred to as oxidative stress
causes an imbalance of ROS and the cellular defense system made up of antioxidant molecules and enzymes like
peroxiredoxins (Prdxs) that contribute to the antioxidant capacity of the cell’’*!. We therefore next analysed ket-
amine’s effects on oxidative stress. Cytoplasmic Prdx1 and mitochondrial Prdx3 protein levels were significantly
lower at the 2h and 72h time points, respectively (Fig. 5A, Supplementary Figure 1C). In addition, we found
decreased total antioxidant capacity (TAC) 72 h after ketamine injection (Fig. 5B, supplementary Figure 1D).
ROS radicals promoting oxidative stress result in cellular damage by reacting with deoxyribonucleic acid (DNA),
ribonucleic acid (RNA), lipids, and proteins. Protein modifications by ROS become apparent through the intro-
duction of carbonyl groups into protein side chains. Since ROS are difficult to measure due to their highly reactive
nature we assessed their presence indirectly by the analysis of carbonylated (damaged) proteins®. Our results
indicate that ketamine results in statistically significant reduction of protein carbonylation 72 h after ketamine
treatment (Fig. 5C).
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Figure 2. Time-dependent Western blot analysis of AMP-activated protein kinase (AMPK) and
phosphorylated AMPK (pAMPK) levels and pAMPK/AMPK ratios reflecting enzyme activation. The results
from ketamine-treated animals are normalised to the ones obtained from vehicle treatment (mean value=1).
N =5 mice per group and time point. *p <0.10, *p <0.05. P-values were determined by Student’ t-test. Error
bars represent s.e.m.

Discussion

Ketamine treatment reduced the ATP/ADP metabolite ratio at 2h and 24 h and both ATP and ADP levels signif-
icantly correlated with FST floating time at 24 h suggesting an energy deficit. This is consistent with our previous
results where we found a significant reduction of ATP levels at 24h?. Also in line with this is our observation of
an increased AMPK activation following ketamine treatment. In the current study we observed several metabolite
level and metabolite ratio changes that are part of the ‘citrate cycle’ and ‘glycolysis’ as early as 2 h after ketamine
administration, reflecting the fast antidepressant effect of the drug. The ‘citrate cycle’ is connected to the OXPHOS
pathway which produces energy in the form of ATP. ‘Glycolysis’ is a major catabolic cytoplasmic pathway where
glucose is degraded to pyruvate, which is further metabolized by pyruvate dehydrogenase complex to acetyl-CoA
that enters the ‘citrate cycle’ The latter is a mitochondrial matrix pathway that is coupled to the OXPHOS path-
way”. We observed metabolite ratio changes that are either due to protein level or protein activity alterations of
OXPHOS complex II enzymatic subunit A that processes these metabolites?®#%. Our previous time-dependent
hippocampal metabolomics profiling analyses indicated statistically significant biomolecular changes that are
part of several pathways including the ‘citrate cycle’ and ‘glycolysis®. Mitochondrial abnormalities including
alterations in energy metabolism have been implicated in the pathobiology of affective disorders*~*. Taken
together, these findings provide further evidence for an important role of mitochondrial energy metabolism in
ketamine’s mode of action to generate ATP which compensates for the increased energy demand at activated
synapses. We propose that ketamine treatment causes a cellular energy deficit by first promoting anabolic pro-
cesses (that consume ATP) through the activation of mMTORCI. This is counterbalanced in a second phase by the
activation of AMPK that promotes catabolic pathways (to generate ATP).

Ketamine affects glutamate neurotransmission and is tightly linked to mitochondrial energy metabolism.
Upon release, glutamate is taken up by glial cells and subsequently metabolized to glutamine. In addition, gluta-
mate is metabolized from a-ketoglutarate, a ‘citrate cycle’ metabolite, and can also be recycled through this path-
way. Interestingly, glutamate neurotransmission also stimulates glucose utilization and ‘glycolysis, the upstream
pathway of the OXPHOS pathway*¢. Magnetic resonance spectroscopy analysis of rat medial prefrontal cortex
with 13C-labeled glucose demonstrated '*C-enrichment of glutamate, glutamine and GABA upon ketamine
treatment, reflecting neurotransmitter release coupled to glycolytic and ‘citrate cycle’ activity. In addition, other
studies have shown elevated medial prefrontal cortex metabolism and an involvement of mitochondria in MDD
pathobiology***”-*. Mitochondrial respiration in peripheral blood mononuclear cells from depressed patients is
lower compared to cells from control subjects and correlates with depressive symptom severity*. Furthermore,
mitochondrial disorders are often comorbid with psychiatric disorders including MDD and patients frequently
suffer from TRD. These patients have a primary impairment of mitochondrial functioning through either nuclear
or mitochondrial DNA mutations. Mitochondrial impairment mostly affects high energy consuming organs
like muscles and brain. The mitochondrial disorder is often recognized only later in life of MDD patients® -,
Previous studies have connected the antidepressant response with drugs elevating ATP levels. Spectroscopy data
have shown decreased NPT levels (mainly ATP) in the brain of depressed patients. Another magnetic resonance
spectroscopy study could demonstrate lower NPT levels (mainly ATP) in fluoxetine responders compared with
non-responders. Previous data from a study in rats have suggested that the antidepressant-like effect observed
after a single injection of ketamine is mediated by an increased anabolic rate-mediating cell growth and differen-
tiation, processes that are highly energy consuming®*°. The high ketamine treatment efficacy for TRD patients
might be due to the drug’s beneficial effects on mitochondrial energy metabolism. We submit that mitochondria

SCIENTIFICREPORTS |7: 15788 | DOI:10.1038/541598-017-16183-x 4



www.nature.com/scientificreports/

o 4
ER a0 = a0
1 +1
o Jd
&
A o
oKy -
L ™ b1
= B G
F F3
- -
| Axs = s b
o o ~ o
= o 3 \.
E L 1] s 4w
4w 2 1e
E o A H bw
[¥] o | 1=
g -
a4
4 o
$ g
T T T T T T T T T
20 -10 o 10 -20 <10 L 10 20
Component 1 ( 19.8 %) Compone 1 { 20.3 %)
=3
* 0 an
+ +1
2 J
=
=
&
o J
- & n1 -
# g "
o xe 1 |
o ! axz
~ o | 23 ~ Bxs LT
E s PV £ o© o i
v £ | ¥
B aAxs 42
=3
E E
=3 o
5] o
2 d 8 4
O w
o
2
S 4
T T T T T T T T T T T
20 10 0 10 -15 <10 5 1] 5 10 15
Component 1 ( 16,8 %) Component 1 ( 13.6 %)

A Ketamine-treated

+ vehicle-treated

Figure 3. Multivariate partial least squares-discriminant analysis (PLS-DA) of (A) membrane-associated
(MF2h) and (B) cytoplasmic (CF2h) proteins at the 2 h time point and (C) membrane-associated (MF24h) and
(D) cytoplasmic (CF24h) proteins 24 h after a single injection of a low dose of ketamine (3 mgkg™) or vehicle
using all quantified proteins. N =5 mice per group and time point.

Protein processing in endoplasmic reticulum | 6 0,001 0,084
Purine metabolism 6 0,001 0,084
Ribosome 5 0,002 0,084
Fructose and mannose metabolism 3 0,002 0,084
Oxidative phosphorylation (OXPHOS) 5 0,002 0,084
Proteasome 3 0,003 0,100

Table 1. Pathway enrichment analysis of significantly altered hippocampal proteins (PLS-DA, variable influence
of projection (VIP)-score 1.0, significance analysis of microarrays and other omic-datasets (SAM), false-
discovery rate (FDR) 0.10, and SAM q 0.10) 2 h after a single injection of a low dose of ketamine (3 mg kg™!).

N =5 mice per group and time point.

play a critical role in the development of MDD as well as AD treatment response, at least in a subset of patients
with a defined symptomatology.

In order to better understand the biomolecular pathways and cellular mechanisms underlying ketamine’s
mode of action, a time-dependent proteomics profiling analysis was also performed. We identified several
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Figure 4. (A) Hippocampal OXPHOS protein levels 2 h after a single injection of a low dose of ketamine
(3mgkg™). Complex I NADH dehydrogenase [ubiquinone] flavoprotein 2 (Ndufv2), cytochrome c1, heme
protein (Cycl), and complex I assembly factor (Tmem126B) levels were determined by quantitative proteomics
profiling. (B) Correlation analyses of Ndufv2, Cycl, Ndufaf7, and Tmem126B protein levels with forced swim
test (EST) floating time 2 h after a single injection of ketamine (p <0.05). The results from ketamine-treated
animals are normalised to the ones obtained from vehicle treatment (mean value = 1). N =5 mice per group and
time point, ***p <0.001. P-values were determined by Student’s t-test and significance analysis of microarrays
and other omic-datasets (SAM). Error bars represent s.e.m. The correlation coefficient r was calculated by
Pearson. The linear regression line is only shown for significant (p < 0.05) correlation coefficients.

pathways that were affected and associated with mitochondrial energy metabolism. The PLS-DA showed a
time-dependent separation of ketamine- and vehicle-treated mice that was evident by significant protein level
alterations and overrepresented pathways. Of the pathways that we found to be affected by ketamine treatment we
focused our attention on OXPHOS, in line with results previously obtained by us that had implicated mitochon-
drial energy metabolism to play a major role in the drug’s mode of action. Ketamine affects the OXPHOS pathway
as is evident by several complex I protein levels (Ndufv2, Cycl, Ndufaf7 and Tmem126B) that correlate with FST
floating time in a treatment time-dependent manner.

Taken together, we propose a mechanism by which ketamine stimulates glutamatergic neurotransmission and
neuronal activity, ultimately resulting in a long-term potentiation (LTP)-like process. This activation results in the
activation of mMTORCI. The mTORC1 mediated anabolic processes include protein synthesis and mitochondrial
biogenesis within 30 minutes and 1 h upon ketamine treatment. Pretreatment with rapamycin, an mTOR inhibi-
tor, prevents ketamine’s antidepressant-like effect?®. Furthermore, other studies indicated that mTOR inhibition
decreases mitochondrial respiration, whereas mTOR hyperactivation elevates the expression of oxidative metabo-
lism genes and mitochondrial DNA copy number®*-%, Hence, ketamine may not only increase protein translation
through mTORCI, but also mitochondrial biogenesis. LTP-like processes require energy in the form of ATP
followed by AMPK activation, which we found in the present study, in order to promote catabolic processes to
generate ATP. Ketamines antidepressant-like effects are known to last for one to two weeks. This long-term effect
can be explained by the observed LTP-like process. Late phase LTP with spine formation and strengthening of
synaptic connections are known to last from days to weeks. Increased OXPHOS activity can result in elevated
ROS levels, a phenomenon referred to as oxidative stress, which causes protein, DNA, RNA and lipid modifica-
tions and damage. We found that protein carbonylation decreases over time until it reaches significance at the
72h time point. This can be explained by either decreased ROS levels or alternatively by an activation of a cellular
defense system that captures ROS. The cellular defense system includes antioxidant molecules and enzymes such
as Prdxs that combat ROS. In addition, a protein quality control system that degrades damaged proteins counter-
acts oxidative stress®®-45%0 We found that total antioxidant capacity (TAC) and cytoplasmic Prdx1 levels were
lower at the 2h and 72 h time points and mitochondrial Prdx3 levels lower at the 72 h time point in ketamine- vs.
vehicle-treated mice. The reduced protein carbonylation we observed in ketamine- vs. vehicle-treated mice could
be indicative of increased protein quality control processes in the cell. This is supported by our proteomic data
that indicate an upregulation of the ‘proteasome’ pathway at the 2h time point. Taken together, our combined
proteomic results suggest that ketamine administration in mice leads to increased degradation of damaged pro-
teins and homeostatic redox adjustment.

The close connection between the glutamatergic system and mitochondrial energy metabolism make a com-
pelling case for the here observed facilitative effects of energy metabolism and the antioxidant defense system
following ketamine administration. Further experiments including blocking pathway enzymes and receptors
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Figure 5. Hippocampal analyses of the antioxidant defense system after a single injection of a low dose of
ketamine (3 mgkg™"). (A) Time-dependent Western blot analysis of peroxiredoxin 1 (Prdx1) and peroxiredoxin
3 (Prdx3). N =5 mice per group and time point. (B) Time-dependent total antioxidant capacity (TAC) analysis.
N =5 mice per group and time point. (C) OxyBlot analysis of the time-dependent protein damage by protein
carbonylation in the hippocampus after ketamine treatment. N =4 mice per group and time point. The results
from ketamine-treated animals are normalised to the ones obtained from vehicle treatment (mean value=1).
*p <0.05, #*p <0.01. P-values were determined by Student’s t-test. Error bars represent s.e.m.

including OXPHOS complex I and AMPK that we found to be involved as well as different ketamine doses are
required to confirm these findings. We only assessed ketamine’s behavioral effect using FST floating time and did
not carry out any additional behavioral analyses like the learned helplessness, chronic mild stress and novelty
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suppressed feeding tests that have been previously reported by others. However, using several consecutive behav-
ioral stress assays will in all likelihood affect the animals’ metabolome and proteome and therefore skew the data.

Methods

Animals and ketamine treatment. The animals and ketamine treatment were housed and carried out as
previously described®. The experiments were performed in accordance with European Communities Council
Directive 86/609/EEC. The protocols were approved by the committee for the Care and Use of Laboratory
Animals of the Government of Upper Bavaria, Germany.

Forced swimtest. The forced swim test and floating time analysis were carried out as previously described?.

Isolation of cytoplasmic protein fraction (CF) and membrane-associated protein fraction
(MF). CF and MF were prepared by repeated tissue homogenization and extraction of non-MF proteins
and solubilization of MF proteins with sodium dodecyl sulfate (SDS). Tissues were homogenized for 30s in
2M NaCl, 10 mM Hepes/NaOH, pH 7.4, containing 1 mM ethylenediaminetetraacetic acid (EDTA), phos-
phatase inhibitor cocktail 2 and 3 (Sigma-Aldrich, Munich, Germany), protease inhibitor cocktail tablets ‘cOm-
plete’ (Roche Diagnostics, Mannheim, Germany), incubated for 10 min and homogenized for 30s and further
with a ultrasonicator for 3 x 10s on ice. Homogenates were centrifuged at 16100 g at 4 °C for 20 min with the
supernatant containing CF proteins. Pellets were rehomogenized in 0.1 M Na,CO; and 1 mM EDTA contain-
ing 1 mM EDTA, phosphatase inhibitor cocktail 2 and 3 (Sigma-Aldrich, Munich, Germany), protease inhib-
itor cocktail tablets ‘cOmplete’ (Roche Diagnostics, Mannheim, Germany), pH 11.3, mixed at 4 °C for 30 min
and collected by centrifugation (16100 g at 4 °C for 20 min). Subsequently, pellets were extracted with 5M urea,
100mM NaCl, 10mM Hepes, pH 7.4 and 1 mM EDTA containing 1 mM EDTA, phosphatase inhibitor cocktail
2 and 3 (Sigma-Aldrich, Munich, Germany), protease inhibitor cocktail tablets ‘cOmplete’ (Roche Diagnostics,
Mannheim, Germany) and then washed twice with 0.1 M Tris-HCI, containing 1 mM EDTA, phosphatase inhib-
itor cocktail 2 and 3 (Sigma-Aldrich, Munich, Germany), protease inhibitor cocktail tablets ‘cOmplete’ (Roche
Diagnostics, Mannheim, Germany) pH 7.6. Pellets were solubilized in 2% SDS, 50 mM dithiothreitol (DTT)
and 0.1 M Tris-HCI, containing 1 mM EDTA, phosphatase inhibitor cocktail 2 and 3 (Sigma-Aldrich, Munich,
Germany), protease inhibitor cocktail tablets ‘cOmplete’ (Roche Diagnostics, Mannheim, Germany) pH 7.6, at
90°C for 1 min and stored at —20 °C until further analysis.

Western blot. Hippocampal MF and CF proteins from 8-week-old male C57BL/6 mice treated with ket-
amine for 2h, 14h, 24h and 72 h were fractionated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
and Western blot was performed based on standard protocols. After electrophoresis, proteins were trans-
ferred to PVDF membranes (Immobilon-P, Millipore, Billerica, USA). Primary antibodies were against
adenosinmonophosphate-activated protein kinase (AMPK, Abcam, Cambridge, UK), phosphorylated AMPK
(pPAMPK, Cell Signaling, Merck, Darmstadt, Germany), peroxiredoxin 1 (Prdx1, Abcam, Cambridge, UK),
peroxiredoxin 3 (Prdx3, Abcam, Cambridge, UK). Anti-rabbit, anti-mouse and anti-goat ECL horserad-
ish peroxidase-linked secondary antibodies (GE Healthcare Life Sciences, Little Chalfont, Buckinghamshire,
UK) were used. The densitometric analyses were performed with the Image Lab software (Bio-Rad, Munich,
Germany).

Protein oxidation analysis. The OxyBlot™ Kit (Merck Millipore, Darmstadt, Germany) was used accord-
ing to the manufacturer’ instructions.

Total antioxidant capacity (TAC). The TAC Assay Kit (BioVision, Milpitas, USA) was used according to
the manufacturer’s instructions. Absorbance was measured at 570 nm using a plate reader (iMark™ Microplate
Absorbance Reader, Bio-Rad, Munich, Germany).

Protein sample preparation for quantitative proteomics analyses. Hippocampal CF and MF
proteins were mixed 1:1 with CF and MF *N-labeled protein standards, respectively. The latter were derived
from C57BL/6 mice that had been fed a '*N-labelled diet (Silantes, Munich, Germany) for 12 weeks. 50 ug of the
1N/N protein mixture were separated by SDS-PAGE. Separated proteins were stained with Coomassie Brilliant
Blue for 20 min and destained overnight. Each gel lane was cut into 16 2.5 mm slices per biological replicate and
each slice further cut into smaller pieces.

The gel pieces were then covered with 100 pl of 25 mM NH,HCO;/50% acetonitrile (ACN) for complete
destaining and mixed for 10 min at room temperature. The supernatant was discarded and this step repeated
twice. Proteins were reduced with 75mL 1x DTT/25 mM NH,HCO; and incubated at 56 °C for 30 min in the
dark. The supernatant was discarded and for alkylation 100 ul iodoacetamide (IAM) was added to the gel pieces
and mixed for 30 min at room temperature. The supernatant was discarded and the gel pieces washed twice with
100 ul 25 mM Na,HCO5/50% ACN and incubated for 10 min at room temperature. The supernatant was discarded
and gel pieces dried for 20 min at room temperature. Proteins were digested with 50 pl trypsin solution (5ng/ul
trypsin/25 mM NH,HCO;) overnight at 37 °C. Peptides were extracted from the gel pieces by incubation in 50 ul
2% formic acid (FA)/50% ACN for 20 min at 37 °C followed by 5min sonication. This step was repeated twice with
50 uL of 1% FA/50% ACN. The supernatants were then combined and dried (SpeedVac Plus, SC 210 A, Savant,
Hyannis, MA, USA). The pellet was stored at —20°C.

Liquid chromatography tandem mass spectrometry (LC-MS/MS). Hippocampal MF and CF pro-
teins were identified and quantified with a Dionex Ultimate 3000 RSLC nanoUPLC (Thermo Fisher Scientific,
Waltham, USA) online coupled to a QExactive™ Orbitrap™ mass spectrometer (Thermo Fisher Scientific,
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Waltham, USA). Separation of peptides was performed by reversed-phase chromatography at a flow rate of 300 nl/
min (Thermo Scientific PepMap C18, 2 um particle size, 100 A pore size, 75 um x 50 cm). Peptides were loaded
onto a pre-column (Thermo Scientific PepMap 100 C18. 5um particle size, 100 A pore size, 300 um x 5mm)
in 0.1% FA for 3 min at a flow rate of 10 ul/min. Chromatography was performed using the following solvents:
solvent A water, 0.1% FA, solvent B 80% ACN, 20% water, 0.1% FA. A linear gradient of 2-40% B for 30 min
was used. The LC eluant was sprayed into the mass spectrometer by means of an easy-spray source (Thermo
Fisher Scientific, Waltham, USA). All m/z values of eluting ions were measured in the Orbitrap mass analyzer,
set at a resolution of 70000. Data dependent scans (Top 20) were employed to automatically isolate and generate
fragment ions by high energy collisional dissociation in the quadrupole mass analyser and measurement of the
resulting fragment ions was performed in the Orbitrap analyzer, set at a resolution of 17500. Peptide ions with
charge states of 2+ to 4+ and above were selected for fragmentation.

Orbitrap raw files were converted to mzXML files using MSConvert software. The in-house software package
iSPY, which was adapted from an earlier version of a peptide quantitation program known as iTracker, was used to
identify and quantify peptides®2. The software was used to convert mzXML to mgf files that were then imported
into Mascot and searched against the SwissProt Mouse database (November 2013) and a decoy database. The
search was then performed using TAXONOMY = Mus. The databases were searched using the following settings:
variable modifications of carbamidomethyl, oxidation), 20 ppm peptide tolerance, 0.1 Da MS/MS tolerance, 2
missed cleavages and peptide charge states of +2, +3, or +4. In iSPY, Mascot dat output files were run through
Percolator for improved identification. Non-unique peptides were discarded. Only peptides with a protein type
1 error of less than 0.01 were kept in the final dataset. The heavy and light peak intensities for each peptide were
calculated in iSPY using retention time and sequence information from the MSI spectra and Mascot search,
respectively. Briefly, the intensities for a pre-specified number of isotopomeric peaks were calculated by scanning
through a retention time window spanning a set distance on either side of the maximum intensity value. The
1N and '°N peptide isotopic peaks from the MS1 dataset were used to compare the theoretical mass difference
between the heavy and light peptides, and the typical isotopic distribution patterns. Only quantifiable peptides
for which both heavy and a light peak intensities were identified in five replicates were included in the dataset.

Isolation of polar metabolites from mouse tissue and metabolomics analyses. Samples were
obtained, measured and analysed as previously described**3.

Statistics and data analyses. Identification of significant metabolite and protein level alterations.
Metabolite intensities as well as protein ratios were median-normalised and auto-scaled for statistical analysis.
Significant protein level changes 2h and 24 h after ketamine treatment were identified by multivariate partial least
squares-discriminant analyses (PLS-DA) and high-dimensional feature selection significance analysis of microar-
rays and other omic-datasets (SAM) using MetaboAnalyst®%. The quality of the PLS-DA models were assessed
for R%, Q? and accuracy values with variable influence of projection (VIP)-score > 1.0 and for SAM with q <0.10
and false discovery rate (FDR) < 0.10%. We improved robustness of our data analyses and increased confidence
in significantly altered metabolites and proteins as well as in the subsequent analyses of overrepresented KEGG
pathways by only considering the overlap between the two different statistical methods.

Identification of significantly enriched pathways. Pathway analyses were performed using MetaboAnalyst®
applying a hypergeometric algorithm for overrepresentation analysis and relative-betweeness centrality for
pathway topology analysis. Pathways were considered affected if they were significantly enriched for all signifi-
cantly altered metabolites (Pyoim-corrected < 0.05). Proteomic pathway enrichment was assessed by String with an
FDR <0.1078,

Calculation of metabolite pair ratios. 'The metabolite pair ratios were calculated as described®.
All data generated or analysed during this study are included in this published article (and its Supplementary
Information files).
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